|
ARDUINO MEGA 2560 REV3 |
x 1 | |
|
Neuton Tiny MLNeuton
|
x 1 |
|
arduino IDEArduino
|
TinyML Monitoring Air Quality on 8-bit Microcontroller
Story
I’d like to share my experiment on how to easily create your own tiny machine learning model and run inferences on a microcontroller to detect the concentration of various gases. I will illustrate the whole process with my example of detecting the concentration of benzene (С6H6(GT)) based on the concentration of other recorded compounds.
To my mind, such simple solutions may contribute to improving the air pollution problem which now causes serious concerns. In fact, the World Health Organization estimates that over seven million people die prematurely each year from diseases caused by air pollution. Can you imagine that?
As such, more and more organizations, responsible for monitoring emissions, need to have effective tools at their disposal to monitor the air quality in a timely way, and TinyML solutions seem to be the best technology for that. They are quite low-energy and cheap to produce, as well as they don’t require a permanent Internet connection. I believe these factors will promote the mass implementation of TinyML as a great opportunity to create AI-based devices and successfully solve various challenges.
Therefore, in my experiment, I take the most primitive 8-bit MCU to show that even such a device today can have ML models in it.
Dataset description:
My dataset contained 5875 rows of hourly averaged responses from an array of oxide chemical sensors that were located on the field in a polluted area in Italy, at road level. Hourly averaged concentrations for CO, Non-Metanic Hydrocarbons, Benzene, Total Nitrogen Oxides (NOx), and Nitrogen Dioxide (NO2) were provided.
It is a regression problem.
Target metric – MAE (Mean Absolute Error). Target - C6H6(GT).
Attribute Information:RH - Relative Humidity
AH - Absolute Humidity
T - Temperature in °C;
PT08.S3(NOx) - Tungsten oxide. Hourly averaged sensor response (nominally NOx targeted);
PT08.S4(NO2) - Tungsten oxide. Hourly averaged sensor response (nominally NO2 targeted);
PT08.S5(O3) - Indium oxide. Hourly averaged sensor response (nominally O3 targeted);
PT08.S1(CO) - (Tin oxide) hourly averaged sensor response (nominally CO targeted);
CO(GT) - True hourly averaged concentration CO in mg/m^3 (reference analyzer);
PT08.S2(NMHC) - Titania. hourly averaged sensor response (nominally NMHC targeted);
You can see more details and download the dataset here: https://archive.ics.uci.edu/ml/datasets/air+quality
Procedure
Step 1: Model Training
The model was created and trained with a free tool, Neuton TinyML, as I needed a super compact model that would fit into a tiny microcontroller with 8-bit precision. I tried to make such a model with the help of TensorFlow before, but it was too large to run operations on 8 bit.
To train the model, I converted the dataset into a CSV file, uploaded it to the platform, and selected the column that should be trained to make predictions.
The trained model had the following characteristics:
The model turned out to be super compact, having only 38 coefficients and 0.234 KB in size!
Additionally, I created models with TF and TF Lite and measured metrics on the same dataset. The comparison speaks louder than words. Also, as I said above, TF models still cannot run operations on 8 bits, but it was interesting for me to use just such a primitive device.
Step 2: Embedding into a Microcontroller
Upon completion of training, I downloaded the archive which contained all the necessary files, including meta-information about the model in two formats (binary, and HEX), calculator, Neuton library, and the implementation file.
Since I couldn’t run the experiment in field conditions with real gases, I developed a simple protocol to stream data from a computer.
Step 3: Running Inference on the Microcontroller
I connected a microcontroller on which the prediction was performed to a computer via a serial port, so signals were received in a binary format.
The microcontroller was programmed to turn on the red LED if the concentration of benzene was exceeded, and the green LED - if the concentration was within permitted limits. Check out the videos below to see how it worked.
In this case, the concentration of benzene is within reasonable bounds (<15 mg/m3).
In this case, the concentration of benzene exceeds the limits (>15 mg/m3).
Conclusion
My example vividly illustrates how everyone can easily use the TinyML approach to create compact but smart devices, even with 8-bit precision. I’m convinced that the low production costs and high efficiency of TinyML open up enormous opportunities for its worldwide implementation.
Due to the absence of the need to involve technical specialists, in this particular case, even non-data scientists can rapidly build super compact models and locate smart AI-driven devices throughout the area to monitor air quality in real-time. To my mind, it’s really inspiring that such small solutions can help us improve the environmental situation on a global scale!
TinyML Monitoring Air Quality on 8-bit Microcontroller
- Comments(0)
- Likes(0)
- 0 USER VOTES
- YOUR VOTE 0.00 0.00
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
More by AlexMiller112
- Gesture-based remote control device IntroductionThis project demonstrates a gesture based remote control device using Silabs xG24 Dev Ki...
- Ultra-Tiny Solution of Daily Activities Recognition IntroDespite the incredible variety of wearable devices today, most of the AI features come down to ...
- TinyML experiment on building a weather station StoryLately, I’ve been really passionate about the field of TinyML, actively researching how to enab...
- Tiny ML Air Writing Recognition with Nicla Sense ME StoryLess than half a year ago, a new Arduino’s board, Nicla Sense ME (Motion & Environment), hi...
- Making Famous Magic Wand 33x Faster IntroThis case is a remake of a well-known “magic wand” experiment. Last year, Pete Warden, the famo...
- Real-time Food Quality Prediction With each passing year, the issue of food waste becomes more acute for the environment. A recent Foo...
- TinyML Monitoring Air Quality on 8-bit Microcontroller StoryI’d like to share my experiment on how to easily create your own tiny machine learning model an...
- Detecting Unstable Electrical Grid with TinyML IntroductionElectricity is the heart of modern social and economic development. More and more countr...
- Tabular Data VS Computer Vision: Detecting Room Occupancy StoryToday, room occupancy detection is widely used in public places as a way to provide safety, man...
- Tiny ML for Big Hearts on an 8-bit Microcontroller StoryIn the course of the pandemic, the interest in creating more innovative medical devices has run...
-
Atomic Force Microscope - electronic part
65 0 0 -
-
-
DIY Fiber Laser Tube Cutting Machine
136 0 1 -
-
-
DIY Transistor Tester | Build Your Own LCR Meter at Home with Arduino Nano
299 0 3 -