|
arduino IDEArduino
|
AVR ISP Programmer
AVR is a family of microcontrollers developed since 1996 by Atmel, acquired by Microchip Technology in 2016. These are modified Harvard architecture 8-bit RISC single-chip microcontrollers. AVR was one of the first microcontroller families to use on-chip flash memory for program storage, as opposed to one-time programmable ROM, EPROM, or EEPROM used by other microcontrollers at the time.
AVR microcontrollers find many applications as embedded systems. They are especially common in hobbyist and educational embedded applications, popularized by their inclusion in many of the Arduino line of open hardware development boards.
History
The AVR architecture was conceived by two students at the Norwegian Institute of Technology (NTH), Alf-Egil Bogen and Vegard Wollan.
Atmel says that the name AVR is not an acronym and does not stand for anything in particular. The creators of the AVR give no definitive answer as to what the term "AVR" stands for. However, it is commonly accepted that AVR stands for Alf and Vegard's RISC processor.[4] Note that the use of "AVR" in this article generally refers to the 8-bit RISC line of Atmel AVR microcontrollers.
The original AVR MCU was developed at a local ASIC house in Trondheim, Norway, called Nordic VLSI at the time, now Nordic Semiconductor, where Bogen and Wollan were working as students.[citation needed] It was known as a μRISC (Micro RISC)and was available as silicon IP/building block from Nordic VLSI.When the technology was sold to Atmel from Nordic VLSI, the internal architecture was further developed by Bogen and Wollan at Atmel Norway, a subsidiary of Atmel. The designers worked closely with compiler writers at IAR Systems to ensure that the AVR instruction set provided efficient compilation of high-level languages.
Among the first of the AVR line was the AT90S8515, which in a 40-pin DIP package has the same pinout as an 8051 microcontroller, including the external multiplexed address and data bus. The polarity of the RESET line was opposite (8051's having an active-high RESET, while the AVR has an active-low RESET), but other than that the pinout was identical.
The AVR 8-bit microcontroller architecture was introduced in 1997. By 2003, Atmel had shipped 500 million AVR flash microcontrollers.[8] The Arduino platform, developed for simple electronics projects, was released in 2005 and featured ATmega8 AVR microcontrollers.
Device architecture[edit]
Flash, EEPROM, and SRAM are all integrated onto a single chip, removing the need for external memory in most applications. Some devices have a parallel external bus option to allow adding additional data memory or memory-mapped devices. Almost all devices (except the smallest TinyAVR chips) have serial interfaces, which can be used to connect larger serial EEPROMs or flash chips.
Program memory[edit]
Program instructions are stored in non-volatile flash memory. Although the MCUs are 8-bit, each instruction takes one or two 16-bit words.
The size of the program memory is usually indicated in the naming of the device itself (e.g., the ATmega64x line has 64 KB of flash, while the ATmega32x line has 32 KB).
There is no provision for off-chip program memory; all code executed by the AVR core must reside in the on-chip flash. However, this limitation does not apply to the AT94 FPSLIC AVR/FPGA chips.
Internal data memory[edit]
The data address space consists of the register file, I/O registers, and SRAM. Some small models also map the program ROM into the data address space, but larger models do not.
Internal registers[edit]
Atmel ATxmega128A1 in 100-pin TQFP package
The AVRs have 32 single-byte registers and are classified as 8-bit RISC devices.
In the tinyAVR and megaAVR variants of the AVR architecture, the working registers are mapped in as the first 32 memory addresses (000016–001F16), followed by 64 I/O registers (002016–005F16). In devices with many peripherals, these registers are followed by 160 “extended I/O” registers, only accessible as memory-mapped I/O (006016–00FF16).
Actual SRAM starts after these register sections, at address 006016 or, in devices with "extended I/O", at 010016.
Even though there are separate addressing schemes and optimized opcodes for accessing the register file and the first 64 I/O registers, all can also be addressed and manipulated as if they were in SRAM.
The very smallest of the tinyAVR variants use a reduced architecture with only 16 registers (r0 through r15 are omitted) which are not addressable as memory locations. I/O memory begins at address 000016, followed by SRAM. In addition, these devices have slight deviations from the standard AVR instruction set. Most notably, the direct load/store instructions (LDS/STS) have been reduced from 2 words (32 bits) to 1 word (16 bits), limiting the total direct addressable memory (the sum of both I/O and SRAM) to 128 bytes. Conversely, the indirect load instruction's (LD) 16-bit address space is expanded to also include non-volatile memory such as Flash and configuration bits; therefore, the Load Program Memory (LPM) instruction is unnecessary and omitted. (For detailed info, see Atmel AVR instruction set.)
In the XMEGA variant, the working register file is not mapped into the data address space; as such, it is not possible to treat any of the XMEGA's working registers as though they were SRAM. Instead, the I/O registers are mapped into the data address space starting at the very beginning of the address space. Additionally, the amount of data address space dedicated to I/O registers has grown substantially to 4096 bytes (000016–0FFF16). As with previous generations, however, the fast I/O manipulation instructions can only reach the first 64 I/O register locations (the first 32 locations for bitwise instructions). Following the I/O registers, the XMEGA series sets aside a 4096 byte range of the data address space, which can be used optionally for mapping the internal EEPROM to the data address space (100016–1FFF16). The actual SRAM is located after these ranges, starting at 200016.
GPIO ports
Each GPIO port on a tiny or mega AVR drives up to eight pins and is controlled by three 8-bit registers: DDRx, PORTx and PINx, where x is the port identifier.
DDRx: Data Direction Register, configures the pins as either inputs or outputs.
PORTx: Output port register. Sets the output value on pins configured as outputs. Enables or disables the pull-up resistor on pins configured as inputs.
PINx: Input register, used to read an input signal. On some devices, this register can be used for pin toggling: writing a logic one to a PINx bit toggles the corresponding bit in PORTx, irrespective of the setting of the DDRx bit.[10]
Newer ATtiny AVR's, like ATtiny817 and its siblings, have their port control registers somewhat differently defined. xmegaAVR have additional registers for push/pull, totem-pole and pullup configurations.
EEPROM
Almost all AVR microcontrollers have internal EEPROM for semi-permanent data storage. Like flash memory, EEPROM can maintain its contents when electrical power is removed.
In most variants of the AVR architecture, this internal EEPROM memory is not mapped into the MCU's addressable memory space. It can only be accessed the same way an external peripheral device is, using special pointer registers and read/write instructions, which makes EEPROM access much slower than other internal RAM.
However, some devices in the SecureAVR (AT90SC) family[11] use a special EEPROM mapping to the data or program memory, depending on the configuration. The XMEGA family also allows the EEPROM to be mapped into the data address space.
Since the number of writes to EEPROM is limited – Atmel specifies 100,000 write cycles in their datasheets – a well designed EEPROM write routine should compare the contents of an EEPROM address with desired contents and only perform an actual write if the contents need to be changed.
Program execution
Atmel's AVRs have a two-stage, single-level pipeline design. This means the next machine instruction is fetched as the current one is executing. Most instructions take just one or two clock cycles, making AVRs relatively fast among eight-bit microcontrollers.
The AVR processors were designed with the efficient execution of compiled C code in mind and have several built-in pointers for the task.
Instruction set
Main article: Atmel AVR instruction set
The AVR instruction set is more orthogonal than those of most eight-bit microcontrollers, in particular the 8051 clones and PIC microcontrollers with which AVR competes today. However, it is not completely regular:
Pointer registers X, Y, and Z have addressing capabilities that are different from each other.
Register locations R0 to R15 have more limited addressing capabilities than register locations R16 to R31.
I/O ports 0 to 31 can be bit addressed, unlike I/O ports 32 to 63.
CLR (clear all bits to zero) affects flags, while SER (set all bits to one) does not, even though they are complementary instructions. (CLR is pseudo-op for EOR R, R; while SER is short for LDI R,$FF. Arithmetic operations such as EOR modify flags, while moves/loads/stores/branches such as LDI do not.)
Accessing read-only data stored in the program memory (flash) requires special LPM instructions; the flash bus is otherwise reserved for instruction memory.
Additionally, some chip-specific differences affect code generation. Code pointers (including return addresses on the stack) are two bytes long on chips with up to 128 KB of flash memory, but three bytes long on larger chips; not all chips have hardware multipliers; chips with over 8 KB of flash have branch and call instructions with longer ranges; and so forth.
The mostly regular instruction set makes programming it using C (or even Ada) compilers fairly straightforward. GCC has included AVR support for quite some time, and that support is widely used. LLVM also has rudimentary AVR support. In fact, Atmel solicited input from major developers of compilers for small microcontrollers, to determine the instruction set features that were most useful in a compiler for high-level languages.
MCU speed
The AVR line can normally support clock speeds from 0 to 20 MHz, with some devices reaching 32 MHz. Lower-powered operation usually requires a reduced clock speed. All recent (Tiny, Mega, and Xmega, but not 90S) AVRs feature an on-chip oscillator, removing the need for external clocks or resonator circuitry. Some AVRs also have a system clock prescaler that can divide down the system clock by up to 1024. This prescaler can be reconfigured by software during run-time, allowing the clock speed to be optimized.
Since all operations (excluding multiplication and 16-bit add/subtract) on registers R0–R31 are single-cycle, the AVR can achieve up to 1 MIPS per MHz, i.e. an 8 MHz processor can achieve up to 8 MIPS. Loads and stores to/from memory take two cycles, branching takes two cycles. Branches in the latest "3-byte PC" parts such as ATmega2560 are one cycle slower than on previous devices.
Development
AVRs have a large following due to the free and inexpensive development tools available, including reasonably priced development boards and free development software. The AVRs are sold under various names that share the same basic core, but with different peripheral and memory combinations. Compatibility between chips in each family is fairly good, although I/O controller features may vary.
See external links for sites relating to AVR development.
Features
AVRs offer a wide range of features:
Multifunction, bi-directional general-purpose I/O ports with configurable, built-in pull-up resistors
Multiple internal oscillators, including RC oscillator without external parts
Internal, self-programmable instruction flash memory up to 256 KB (384 KB on XMega)
In-system programmable using serial/parallel low-voltage proprietary interfaces or JTAG
Optional boot code section with independent lock bits for protection
On-chip debugging (OCD) support through JTAG or debugWIRE on most devices
The JTAG signals (TMS, TDI, TDO, and TCK) are multiplexed on GPIOs. These pins can be configured to function as JTAG or GPIO depending on the setting of a fuse bit, which can be programmed via ISP or HVSP. By default, AVRs with JTAG come with the JTAG interface enabled.
debugWIRE uses the /RESET pin as a bi-directional communication channel to access on-chip debug circuitry. It is present on devices with lower pin counts, as it only requires one pin.
Internal data EEPROM up to 4 KB
Internal SRAM up to 16 KB (32 KB on XMega)
External 64 KB little endian data space on certain models, including the Mega8515 and Mega162.
The external data space is overlaid with the internal data space, such that the full 64 KB address space does not appear on the external bus and accesses to e.g. address 010016 will access internal RAM, not the external bus.
In certain members of the XMega series, the external data space has been enhanced to support both SRAM and SDRAM. As well, the data addressing modes have been expanded to allow up to 16 MB of data memory to be directly addressed.
8-bit and 16-bit timers
PWM output (some devices have an enhanced PWM peripheral which includes a dead-time generator)
Input capture that record a time stamp triggered by a signal edge
Analog comparator
10 or 12-bit A/D converters, with multiplex of up to 16 channels
12-bit D/A converters
A variety of serial interfaces, including
I2C compatible Two-Wire Interface (TWI)
Synchronous/asynchronous serial peripherals (UART/USART) (used with RS-232, RS-485, and more)
Serial Peripheral Interface Bus (SPI)
Universal Serial Interface (USI): a multi-purpose hardware communication module that can be used to implement an SPI,[12] I2C[13][14] or UART[15] interface.
Brownout detection
Watchdog timer (WDT)
Multiple power-saving sleep modes
Lighting and motor control (PWM-specific) controller models
CAN controller support
USB controller support
Proper full-speed (12 Mbit/s) hardware & Hub controller with embedded AVR.
Also freely available low-speed (1.5 Mbit/s) (HID) bitbanging software emulations
Ethernet controller support
LCD controller support
Low-voltage devices operating down to 1.8 V (to 0.7 V for parts with built-in DC–DC upconverter)
picoPower devices
DMA controllers and "event system" peripheral communication.
Fast cryptography support for AES and DES
Programming interfaces[edit]
There are many means to load program code into an AVR chip. The methods to program AVR chips varies from AVR family to family. Most of the methods described below use the RESET line to enter programming mode. In order to avoid the chip accidentally entering such mode, it is advised to connect a pull-up resistor between the RESET pin and the positive power supply.
ISP
6- and 10-pin ISP header diagrams
The in-system programming (ISP) programming method is functionally performed through SPI, plus some twiddling of the Reset line. As long as the SPI pins of the AVR are not connected to anything disruptive, the AVR chip can stay soldered on a PCB while reprogramming. All that is needed is a 6-pin connector and programming adapter. This is the most common way to develop with an AVR.
The Atmel-ICE device or AVRISP mkII (Legacy device) connects to a computer's USB port and performs in-system programming using Atmel's software.
AVRDUDE (AVR Downloader/UploaDEr) runs on Linux, FreeBSD, Windows, and Mac OS X, and supports a variety of in-system programming hardware, including Atmel AVRISP mkII, Atmel JTAG ICE, older Atmel serial-port based programmers, and various third-party and "do-it-yourself" programmers
PDI
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external programming and on-chip debugging of XMEGA devices. The PDI supports high-speed programming of all non-volatile memory (NVM) spaces; flash, EEPROM, fuses, lock-bits and the User Signature Row. This is done by accessing the XMEGA NVM controller through the PDI interface, and executing NVM controller commands. The PDI is a 2-pin interface using the Reset pin for clock input (PDI_CLK) and a dedicated data pin (PDI_DATA) for input and output.
UPDI
The Unified Program and Debug Interface (UPDI) is a one-wire interface for external programming and on-chip debugging of newer ATtiny and ATmega devices. The Atmel-ICE and PICkit 4 are capable of programming UPDI chips. It is also possible to use an Arduino thanks to jtag2updi.
High-voltage seria
High-voltage serial programming (HVSP)[20] is mostly the backup mode on smaller AVRs. An 8-pin AVR package does not leave many unique signal combinations to place the AVR into a programming mode. A 12-volt signal, however, is something the AVR should only see during programming and never during normal operation. The high voltage mode can also be used in some devices where the reset pin has been disabled by fuses.
High-voltage parallel
High-voltage parallel programming (HVPP) is considered the "final resort" and may be the only way to correct bad fuse settings on an AVR chip.
Bootloader
Most AVR models can reserve a bootloader region, 256 bytes to 4 KB, where re-programming code can reside. At reset, the bootloader runs first and does some user-programmed determination whether to re-program or to jump to the main application. The code can re-program through any interface available, or it could read an encrypted binary through an Ethernet adapter like PXE. Atmel has application notes and code pertaining to many bus interfaces.
ROM
The AT90SC series of AVRs are available with a factory mask-ROM rather than flash for program memory.[25] Because of the large up-front cost and minimum order quantity, a mask-ROM is only cost-effective for high-production runs.
aWire
aWire is a new one-wire debug interface available on the new UC3L AVR32 devices.
Debugging interfaces
The AVR offers several options for debugging, mostly involving on-chip debugging while the chip is in the target system.
debugWIRE
Main article: debugWIRE
debugWIRE is Atmel's solution for providing on-chip debug capabilities via a single microcontroller pin. It is particularly useful for lower pin count parts which cannot provide the four "spare" pins needed for JTAG. The JTAGICE mkII, mkIII and the AVR Dragon support debugWIRE. debugWIRE was developed after the original JTAGICE release, and now clones support it.
JTAG
The Joint Test Action Group (JTAG) feature provides access to on-chip debugging functionality while the chip is running in the target system.[26] JTAG allows accessing internal memory and registers, setting breakpoints on code, and single-stepping execution to observe system behaviour.
Atmel provides a series of JTAG adapters for the AVR:
The Atmel-ICE[27] is the latest adapter. It supports JTAG, debugWire, aWire, SPI, TPI, and PDI interfaces.
The JTAGICE 3[28] is a midrange debugger in the JTAGICE family (JTAGICE mkIII). It supports JTAG, aWire, SPI, and PDI interfaces.
The JTAGICE mkII[29] replaces the JTAGICE and is similarly priced. The JTAGICE mkII interfaces to the PC via USB, and supports both JTAG and the newer debugWIRE interface. Numerous third-party clones of the Atmel JTAGICE mkII device started shipping after Atmel released the communication protocol.
The AVR Dragon is a low-cost (approximately $50) substitute for the JTAGICE mkII for certain target parts. The AVR Dragon provides in-system serial programming, high-voltage serial programming and parallel programming, as well as JTAG or debugWIRE emulation for parts with 32 KB of program memory or less. ATMEL changed the debugging feature of AVR Dragon with the latest firmware of AVR Studio 4 - AVR Studio 5 and now it supports devices over 32 KB of program memory.
The JTAGICE adapter interfaces to the PC via a standard serial port. Although the JTAGICE adapter has been declared "end-of-life" by Atmel, it is still supported in AVR Studio and other tools.
JTAG can also be used to perform a boundary scan test,[33] which tests the electrical connections between AVRs and other boundary scan capable chips in a system. Boundary scan is well-suited for a production line, while the hobbyist is probably better off testing with a multimeter or oscilloscope.
Development tools and evaluation kits
Atmel STK500 development board
Official Atmel AVR development tools and evaluation kits contain a number of starter kits and debugging tools with support for most AVR devices:
STK600 starter kit
The STK600 starter kit and development system is an update to the STK500.[34] The STK600 uses a base board, a signal routing board, and a target board.
The base board is similar to the STK500, in that it provides a power supply, clock, in-system programming, an RS-232 port and a CAN (Controller Area Network, an automotive standard) port via DE9 connectors, and stake pins for all of the GPIO signals from the target device.
The target boards have ZIF sockets for DIP, SOIC, QFN, or QFP packages, depending on the board.
The signal routing board sits between the base board and the target board, and routes the signals to the proper pin on the device board. There are many different signal routing boards that could be used with a single target board, depending on what device is in the ZIF socket.
The STK600 allows in-system programming from the PC via USB, leaving the RS-232 port available for the target microcontroller. A 4 pin header on the STK600 labeled 'RS-232 spare' can connect any TTL level USART port on the chip to an onboard MAX232 chip to translate the signals to RS-232 levels. The RS-232 signals are connected to the RX, TX, CTS, and RTS pins on the DB-9 connector.
STK500 starter kit
The STK500 starter kit and development system features ISP and high voltage programming (HVP) for all AVR devices, either directly or through extension boards. The board is fitted with DIP sockets for all AVRs available in DIP packages.
STK500 Expansion Modules: Several expansion modules are available for the STK500 board:
STK501 – Adds support for microcontrollers in 64-pin TQFP packages.
STK502 – Adds support for LCD AVRs in 64-pin TQFP packages.
STK503 – Adds support for microcontrollers in 100-pin TQFP packages.
STK504 – Adds support for LCD AVRs in 100-pin TQFP packages.
STK505 – Adds support for 14 and 20-pin AVRs.
STK520 – Adds support for 14 and 20, and 32-pin microcontrollers from the AT90PWM and ATmega family.
STK524 – Adds support for the ATmega32M1/C1 32-pin CAN/LIN/Motor Control family.
STK525 – Adds support for the AT90USB microcontrollers in 64-pin TQFP packages.
STK526 – Adds support for the AT90USB microcontrollers in 32-pin TQFP packages.
AVR ISP Programmer
*PCBWay community is a sharing platform. We are not responsible for any design issues and parameter issues (board thickness, surface finish, etc.) you choose.
- Comments(2)
- Likes(1)
- Andrius Gailius Apr 07,2023
- 0 USER VOTES
- YOUR VOTE 0.00 0.00
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
More by Sreeram.zeno
- Esp12-F Cluster V1.0 The ESP8266 is a low-cost Wi-Fi microchip, with built-in TCP/IP networking software, and microcontro...
- TB6612FNG Motor Driver The TB6612FNG Motor Driver can control up to two DC motors at a constant current of 1.2A (3.2A peak)...
- Sunny Buddy Solar Charger v1.0 This is the Sunny Buddy, a maximum power point tracking (MPPT) solar charger for single-cell LiPo ba...
- Diy 74HC4051 8 Channel Mux Breakout Pcb The 74HC4051; 74HCT4051 is a single-pole octal-throw analog switch (SP8T) suitable for use in analog...
- Diy RFM97CW Breakout Pcb IntroductionLoRa? (standing for Long Range) is a LPWAN technology, characterized by a long range ass...
- ProMicro-RP2040 Pcb The RP2040 is a 32-bit dual ARM Cortex-M0+ microcontroller integrated circuit by Raspberry Pi Founda...
- Serial Basic CH340G Pcb A USB adapter is a type of protocol converter that is used for converting USB data signals to and fr...
- Mp3 Shield For Arduino Hardware OverviewThe centerpiece of the MP3 Player Shield is a VS1053B Audio Codec IC. The VS1053B i...
- MRK CAN Shield Arduino The CAN-BUS Shield provides your Arduino or Redboard with CAN-BUS capabilities and allows you to hac...
- AVR ISP Programmer AVR is a family of microcontrollers developed since 1996 by Atmel, acquired by Microchip Technology ...
- Diy Arduino mega Pcb The Arduino Mega 2560 is a microcontroller board based on the ATmega2560. It has 54 digital input/ou...
- Max3232 Breakout Board MAX3232 IC is extensively used for serial communication in between Microcontroller and a computer fo...
- Line Follower Pcb The Line Follower Array is a long board consisting of eight IR sensors that have been configured to ...
- HMC6343 Accelerometer Module The HMC6343 is a solid-state compass module with tilt compensation from Honeywell. The HMC6343 has t...
- RTK2 GPS Module For Arduino USBThe USB C connector makes it easy to connect the ZED-F9P to u-center for configuration and quick ...
- Arduino Explora Pcb The Arduino Esplora is a microcontroller board derived from the Arduino Leonardo. The Esplora differ...
- Diy Stepper Motor Easy Driver A motor controller is a device or group of devices that can coordinate in a predetermined manner the...
- Diy Arduino Pro Mini The Arduino Pro Mini is a microcontroller board based on the ATmega168 . It has 14 digital input/out...
-
-
-
-
-
-
3D printed Enclosure Backplate for Riden RD60xx power supplies
153 1 1 -
-